
14”10
THE METHODOF LINES FOR THE ANALYSIS OF PLANARWAVEGUIDESWITH MAGNETIZEDFERRITE SUBSTRATE

R. Pregla, S.B. Worm

Department of Electrical Engineering, FernUniversitat
P.O. Box 940, D-5800 Hagen, Federal Republic of Germany

Abstract

It is shown, how the very efficient method of lines
can be applied to the analysis of planar waveguides
(e.g. microstrip, slotline, finline or more complex
structures) on ferrite substrate transversely mag-
netized perpendicular to the plane of the substrate.
Dispersion diagrams for microstrip on magnetized
ferrite substrate obtained with a desktop computer
are presented.

Introduction

The method of lines has been proved to be very
efficient [1,2] for calculating the characteristic
properties of planar microwave waveguides, e.g.
microstrip, slotline and finline or other struc-
tures built from them e.g. resonators, periodic
structures [3] . The method has no problems with
the relative convergence phenomenon, is very accu-
rate and has low memory capacity requirements, so
that even relatively complex structures can be ana-
lyzed on a desktop computer.
In this contribution itwill be shown, how the
method of lines can be applied to shielded planar
structures on ferrite substrate transversely mag-
netized perpendicular to the plane of the substrate.
The much simpler case with transversely magnetized
ferrite in the plane of the substrate is given in
[4]. The structure here may contain an arbitrary
number of dielectric and magnetic layers, but the
principle is demonstrated for the two-layer struc-
ture in fig. 1. Because the boundary conditions at
electric or magnetic side walls in this case are
not homogeneous in the ferrite layer ist is assumed
that the structure in fig. 1 is an elementary cell
of a periodic structure in x-direction.
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Fig. 1 Cross-section of planar microwave struc-
ture on magnetized ferrite substrate
(— lines for Ey ---- lines for Hy)

The computed dispersion diagrams are compared with
results of Krause [5] , who used a mode matching
procedure.

Method of analysis

In the ferrite substrate Maxwell’s equations for
time-harmonic electromagnetic fields can be written
as

VxH=jwc E v ● (fiH)

VXE =-jtifi H v*E

With the d.c. magnetic field Ho
permeability tensor becomes

=0
(1)

=0

in y-direction the
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pl.l+ 9V2=
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y is the gyromagnetic ratio and Ms the saturation
magnetization.
The propagation is assumed to be in the z-direction
with exp(-j~z). According to [6]the electromagnetic
field can be determined from the components in the
direction of the d.c. magnetic field. The following
equations are obtained for the field components
Ey and Hy:

with
2 2

2E2110, n= (lJo/c2)
1/2

vf=u1-u2/ul , kf=m

The boundary conditions on a wall in the y-z-plane
are as follows:
Electrical wall:

aHy _ ~2 aHz
Ey(=Ez)=O; ~--j—r

PI .
(5)
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Magnetic wall:

aEy
Hy(=tlz) = O ; ~ = - p2 n kf HX (6)

In order to solve these equations, the$fielc!s are
phase normalized by multiplying with eJbx and dis-
cretized with respect to the x-variable with inter-
val size h(fig.1).The discretization lines for Ey
and Hy are shifted with respect to each other in
order to obtain smaller discretization erros [1] .
The partial derivatives with respect to x can be
written as

heJbx # + [D] [Se]?y;[Sel=diag[ ejb ihl

(7)

ejbhi+~)lhejbx aHy~+.[D] *t[Sh]~y; [Sh]=diag

h2ejbx ~+ -[D]* t[D][Se]~y
ax

~2ejbx a2Hy~+ -[D][D]*t[sh]~y

ax

(8)

where fiy and ~y are the column vectors of dicreti-
zed fields. The lateral boundary conditions must be
included in the difference-oDerators.
Because of the partially nonhomogeneous conditions
in eq,(5) and (6) this is not possible in simple
way. Therefore periodic conditions are assumed, that
means that according to Floquets theorem we intro-
duce

F. F.e-.ibhP=FiS1-p
l+p= 1 (9)

where Fi stands for anyone of the field components
at line i and ph is the lenght of the period. bhp
may be chosen to O or IT. The difference-operators
are given now as

with S1 = S*2.

By means of the orthogonal transformation matrices
[Te] and [Th], of which the columns are the eigen-
vectors of the matrices [D]*t [D]and [D] [D]*t
respectively [1] , the vectors of the discretized
and phase normalized fields are transformed into
the spectral domain

[Se]~y =[Te]~y and [Sh]fiy = [Th]~y (11)

with [Te,h]*t[D][D]*t [Te,h]= diag[A2]

[Teli ~=exp(jZ’mi k/p)@
>

It ‘is found, that

[Te,h]*[D][Te,h] =[1] and

[Thl*t[Dl[Te] = j[a]
Transforming equations (3) and (4) yields a system
of ordinary differential equations

‘2 a
(<+pfk; - B*)- j[A21)Ey=kfn ~~ !jY (12)
dy

d2 ‘f ‘2 a
(F+ k; - f32)--&21)~Y= ‘———KY (13)

n V1 ay

that can be solved entirely in the spectral domain
for each pair of elements Eyi, Hy sperately. By
combination a system of uncoupled fourth order
differential equations for ~y or ~y can be derived:

The solution of eqn, (14) is obtained as a super-
position of two partial sulutions.

~yi . A1icoshkY1iy+ A2i cosh kY2i Y (15)

Ijyi = Bli sinh k .y+B2i sinh kyll y2i y
(16)

with

Because ofeqn.(12) and (13) the coefficients Bli
and B2i are determined by Ali and A2i.

All other components in the ferrite substrate can
now be expressed in terms of Eyi and H,Yi and their
first derivatives with respectto y.
In the dielectric layers the electromagnetic field
is obtained in a similiar but simpler manner with
u2=Oandu1=l.

Applying continuity conditions at the ferrite-
dielectric interface yields a system of equations
for the tangential electric field components and
the current density distributions at the interface
in the spectral domain

[Thli k=exp(,jZn(i+.5)k/p)/0
,
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[z] [j:]y=dF=[:lY=dF

where [~] contains for our simple structure four
diagonal submatrices.

The final boundary condition, Etan= o on the
metallic parts of the interfaces or Jtan = O in the
slots in a more complex structure must be imposed
in the original domain, so that an inverse trans-
formation is required. Only a few lines are requi-
red trough the strips or slots. Thus, the final
eigenvalue equation has a very low order and the
propagation constant can be determined with rela-
tively small effort.

Numerical results

For the microstrip shown in fig.(1) some numerical
results are obtained. The discretization distance
h is chosen such, that the strip width equals
W = (M-.5)h, where M is the number of Ey-lines on
the strip. The dispersion diagram for the funda-
mental mode fig. (2) was calculated with M = 4.
The agreement with the results of Krause [5]
(dashed curves) is good in the case of the nor-
malized magnetizing field hl = 8.1 but for
h~=2.O the difference incr~ases with frequency.
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Fig. 2 Dispersion diagram for a microstrip on mag-
netized ferrite ( — this method

----- from[5] )
W = lmm, dF= .63~mm, d = 5 dF

‘r7 = 12,3, Ms = 1,4 kA/~m, g = 1,98
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